
Cache Memory

Introduction:
Cache memory is fast memory that is used to hold the most recently
accessed data in slower main memory. The idea is that frequently
accessed data will stay in cache, which allows the CPU to access it
more quickly, which means it doesn't have to wait for the data to arrive.

Cache Memory is the Processor's internal quick-hand storage that it
uses for things that it's currently processing at that given time.
As with most things, the more cache memory a processor has, it will
usually run smoother and faster than one with less of about the same
operating frequency.

 Cache Memory
 Locality of Reference

 the references to memory tend to be confined within a few localized areas in
memory. Ex. Program loops or subroutine.It states that over a short interval of
time the addresses generated by a typical program refers to a few localized areas
of memory repeatedly.

 Cache Memory : a fast small memory
 keeping the most frequently accessed instructions and data in the fast cache

memory
 Cache

 cache size : 256 K byte (512 K byte)
 mapping method : 1) associative, 2) direct, 3) set-associative
 replace algorithm : 1) LRU, 2) LFU, 3) FIFO
 write policy : 1) write-through, 2) write-back

 Hit Ratio
 the ratio of the number of hits divided by the total CPU references (hits + misses)

to memory
» hit : the CPU finds the word in the cache (0.9)
» miss : the word is not found in cache (CPU must read main memory)

 An example where cache memory access time = 100 ns, main memory access
time = 1000 ns, hit ratio = 0.9 produces an average access time of 200 ns.

» 1 miss : 1 x 1000 ns without the cache memory the time is 1000ns
» 9 hit : 9 x 100 ns

1900 ns / 10 = 190 ns

 Mapping
 The transformation of data from main memory to cache memory

» 1) Associative mapping
» 2) Direct mapping
» 3) Set-associative mapping

 Example of cache memory :
main memory : 32 K x 12 bit word (15 bit address lines)
cache memory : 512 x 12 bit word

» CPU sends a 15-bit address to cache
 Hit : CPU accepts the 12-bit data from cache
 Miss : CPU reads the data from main memory (then data is written to cache)

M a i n m e m o r y
3 2 K × 1 2

C P U
C a c h e m e m o r y

5 1 2 × 1 2

Associative mapping : associative memory stores both address and data of the
memory word.

A r g u m e n t r e g i s t e r

0 1 0 0 0

2 2 3 4 5

0 2 7 7 7

3 4 5 0

1 2 3 4

6 7 1 0

A d d r e s s D a t a

C P U a d d r e s s (1 5 b i t s)

If the address is found, the corresponding
12-bit data is read and send to the CPU. IF
NO MATCH OCCURS, then main memory
is accessed for the word. The address pair is
then transferred to the associative memory.
If the cache is full, an address-data pair
must be displaced to make room for a pair
that is needed and not presently is in cache.

This is done with replacement algorithm.

 Direct mapping cache organization : Fig. 12-13
» For address 02000
1) Index 000 cache , tag 00 and data 1220
2) Suppose CPU wants to access the word at
address 02000.
3) The index address is 000 so it is used to
Access cache. Two tags then compared.
4)Cache tag 00 but address tag 02, not match
5)Main m/m accessed & data word 5670 is
Transferred to CPU.
6)Now 000 is replaced with tag 02 & data 5670.

3 2 K × 1 2

M a i n m e m o r y

A d d r e s s = 1 5 b i t s
D a t a = 1 2 b i t s

T a g I n d e x

6 b i t s 9 b i t s

H e x
A d d r e s s

0 0 0 0 0

3 F 1 F F

5 1 2 × 1 2
C a c h e m e m o r y

A d d r e s s = 9 b i t s
D a t a = 1 2 b i t s

 0 0 0

 1 F F

O c t a l
a d d r e s s

1 2 2 0

2 3 4 0

3 4 5 0

4 5 6 0

5 6 7 0

6 7 1 0

M e m o r y d a t a
M e m o r y

 a d d r e s s

0 0 0 0 0 0

0 2 7 7 7

0 2 0 0 0

0 1 7 7 7

0 1 0 0 0

0 0 7 7 7

0 0 1 2 2 0

0 2 6 7 1 0

T a g D a t a
In d e x

 a d d r e s s

 0 0 0

 7 7 7

(a) M a i n m e m o r y

(b) C a c h e m e m o r y

Tag (6 bit)
00 - 63

Index (9 bit)
000 - 511

Direct mapping : Fig. 12-12

Cache memory

Tag field (n - k)

Index field (k)
»2k words cache memory and 2n words

main memory
Tag = 6 bit (15 - 9), Index = 9 bit

 Direct mapping cache with block size of 8 words : Fig. 12-14
» 64 block x 8 word = 512 cache words size

0 0 0

0 0 7

0 1 0

0 1 7

0 1

0 1

7 7 0

7 7 7

0 2

0 2

3 4 5 0

6 5 7 8

6 7 1 0

I n d e x T a g D a t a

B lo c k 0

B lo c k 1

B lo c k 6 3

T a g B l o c k W o r d

6 36

I n d e x

0 1 3 4 5 0 0 2 5 6 7 0

0 2 6 7 1 0 0 0 2 3 4 0

0 0 0

7 7 7

I n d e x T a g D a t a T a g D a t a

Set-associative mapping :
Disadvantage of direct mapping: two words with the same index in
their address but with different tag values can not reside in cache
memory at the same time.

 Replacement Algorithm : cache miss or full
 1) LRU (Least Recently Used) :
 2) LFU (Least Frequently Used) :
 3) FIFO (First-In First-Out) :

 Writing to Cache : Cache Coherence
» 1) Write-through : UPDATE the main memory with every memory write operation with

cache memory being updated in parallel.
» 2) Write-back : only cache location is updated during the write operation. The location

is then marked by flag so that later when the word is removed from the cache it is
copied into main memory.

 Cache Initialization
 Cache is initialized :
 1) when power is applied to the computer

» 2) when main memory is loaded with a complete set of programs from auxiliary memory
 valid bit

» indicate whether or not the word contains valid data

Application

 Cache memory is a mechanism interposed in the memory hierarchy
between main memory and the CPU to improve effective memory
transfer rates and raise processor speeds.

 Cache memory operates like a "frequently used data" file for your CPU.
The cache dynamically stores and accesses the data your CPU and
applications access most often so that it can be more quickly retrieved.

 Caches are designed to alleviate this bottleneck by making the data
used most often by the CPU instantly available. This is accomplished by
building a small amount of memory, known as primary or level 1 cache,
right into the CPU. Level 1 cache is very small, normally ranging
between 2 kilobytes (KB) and 64 KB.

